論 文

柱RC梁S接合部のせん断耐力

古谷祐希 *1·田畑 卓 *1·伊藤隆之 *2

梁が柱梁接合部を貫通しない非梁貫通形式の柱RC梁S接合部の開発の一環として,柱梁接合部の構造性 能検証実験を行った。その結果,柱梁接合部の終局せん断耐力(計算値)は,既往の式により安全側に評 価された。ただし,ふさぎ板の基準化幅厚比が50程度の試験体では,他の試験体と比べ,最大耐力(実験 値)と接合部終局せん断耐力(計算値)の比が小さくなる傾向が認められた。

キーワード: 混合構造, 柱梁接合部, 架構実験, ふさぎ板, せん断耐力

1. はじめに

鉄筋コンクリート (RC) 造柱と鉄骨 (S) 造梁で構成 される柱 RC 梁 S 造構造 (RCS 構造) は,梁のフランジ およびウェブがそのままの形で柱梁接合部を貫通する梁 貫通形式と梁が柱梁接合部を貫通しない非梁貫通形式に 大別される。本論では後者の非梁貫通形式を対象として おり,柱梁接合部は図-1に示すように RC 柱を鋼板製 のふさぎ板で囲み,ふさぎ板の上下に通しダイアフラム を取り付けたものである。梁のフランジはダイアフラム に,ウェブはふさぎ板と溶接接合されている。

図-1 柱梁接合部の詳細

異種部材による混合構造の場合,異なる部材が交差す る柱梁接合部の力学的性状を把握することが重要であ る。そこでこの柱梁接合部のせん断耐力を検証するため, 縮小試験体による加力実験を実施した。本報では,その 結果について報告する。

2. 実験計画

2.1 試験体

表-1に試験体一覧を、図-2に試験体形状および断 面を示す。試験体は実建物の1/2.7程度の縮尺で設計さ れた十字形試験体が4体、ト字形試験体が1体の全5体 である。柱断面は350mm×350mm,柱主筋は12-D19(SD345, 引張鉄筋比 p_t =1.4%),帯筋は2-D10@80(785N/mm²級高 強度せん断補強筋、 p_r =0.51%),梁せいは300mmで各試 験体共通とし、柱梁接合部のせん断破壊が先に生じるよ うに計画した。主な実験変数はコンクリート設計基準強 度とふさぎ板の板厚とし、板厚は式(1)によるふさぎ 板の基準化幅厚比 λ で48~190の範囲とした。

$$\lambda = \frac{c B}{\int t \cdot \sqrt{\frac{235}{f}\sigma_y}} \tag{1}$$

ここで、 λ はふさぎ板の基準化幅厚比、 $_{c}B$ は柱幅 (mm)、 $_{f}t$ はふさぎ板の板厚 (mm)、 $_{f}\sigma_{y}$ はふさぎ板の降伏強度 (N/mm²)である。

基準試験体である試験体 No.5 は、コンクリート設計基準強 度を $60N/mm^2$, ふさぎ板の板厚を 4.5 mm とした。No.6 と No.7 は、 No.5 からふさぎ板の板厚を変えそれぞれ 2.3 mm、9 mm とした。 No.4 は、No.5 からコンクリート設計基準強度を変えた 試験体であり、コンクリート設計基準強度を $36N/mm^2$ と した。No.10 は、ト字形の試験体であり、ふさぎ板の板

試験体		No.4	No.5	No.6	No.7	No.10
	試験体形状	十字形				ト字形
	想定破壊形式					
	コンクリート	Fc36 Fc60				
梁	断面 (mm)	BH-300 × 125				
	ウェブの板厚 (mm)	9				12
	フランジの板厚 (mm)	25			28	36
	鋼種	SM490A				
	断面 (mm)	350 × 350				
柱	主筋	12-D19 (SD345)				
梁 柱 接合部	帯筋	2-D10@80 (785N/mm ²				
柱接合部	ダイアフラム厚 (mm)	32		36	40	
	鋼種	SM490A				
合	ふさぎ板の板厚 (mm)	4	.5	2.3	9	2.3
部	基準化幅厚比	1(00	190	48	190
	鋼種	SS400			SM490A	SS400

表-1 試験体一覧

表-2 コンクリートの材料試験結果

試験体	コンクリート 圧縮強度	割裂引張強度 σ _t (N/mm ²)		
No.4	38.7	3.3		
No.5~7	69.5	3.9		
No.10	60.1	2.9		

図-2 試験体形状および断面

			降伏強度	引張強さ	伸び
種類	材質	使用箇所	σ _y	σ_{u}	
			N/mm ²	N/mm ²	%
PL-2.3	SS400	ふさぎ板	367	436	18.7
PL-4.5	SS400	ふさぎ板	390	463	18.5
PL-9	SM490A	ふさぎ板	363	545	21.5
PL-9	SM490A	梁鉄骨(ウェブ)	356	509	25.1
PL-12	SM490A	梁鉄骨(ウェブ)	356	513	28.0
PL-25	SM490A	梁鉄骨(フランジ)	330	515	30.5
PL-28	SM490A	梁鉄骨(フランジ)	323	491	31.3
PL-32	SM490A	ダイアフラム	332	502	31.3
PL-36	SM490A	梁鉄骨(フランジ), ダイアフラム	344	530	29.1
PL-40	SM490A	ダイアフラム	356	514	33.7
D19	SD345	柱主筋	363	549	20.7
D10	785N/mm ² 級	帯筋	821	1005	10.2

表-3 鋼材の材料試験結果

300

厚を2.3mmとした。ふさぎ板の鋼種は, No.4~No.6お よびNo.10でSS400, No.7でSM490Aとした。ダイアフ ラムと梁の鋼種は,各試験体共通でSM490Aとした。

2.2 使用材料

表-2にコンクリートの材料試験結果,表-3に鋼材の材料試験結果を示す。

2.3 実験方法

図-3に加力装置を示す。十字形試験体は,柱の上下 端をピン支持し,試験体の梁に接続した補助梁からピンを 介して油圧ジャッキを取り付けた。加力は,柱に一定軸力 を載荷した状態で,油圧ジャッキを梁先端で計測した変位 が逆対称となるように制御を行った。ト字形試験体は,十 字形試験体と同様に試験体をセットし,1本の油圧ジャッ キで加力した。いずれの試験体も層間変形角*R*による変

図-3 加力装置

形制御とし、正負交番繰返し載荷を行った。加力サイクル は R=2.5/1000rad, 5/1000rad で 各1回, R=10/1000rad, 20/1000rad, 30/1000rad で 各2回, R=40/1000rad, 50/1000rad で各1回繰返した後, R=+66.7/1000rad まで載荷 した。載荷軸力NはN=0.15× $_{c}B$ × $_{c}D$ × $_{\sigma}$ とした。ここで、 cD は柱せい (mm), σ , は材料試験結果に基づくコンクリート 圧縮強度(N/mm²) である。

また、主な鉄筋および鉄骨のひずみをひずみゲージに て計測した。

3. 実験結果

3.1 破壊経過

表-4に実験結果一覧,写真-1にR=30/1000radに おける柱梁接合部の損傷状況,図-4に各試験体の層せ ん断力 Q_e-層間変形角 R 関係を示す。図-4中には後述 する式(2)~(5)による接合部終局せん断耐力とウェ ブを考慮した梁全塑性曲げ耐力を併記した。なお、凡例 の梁フランジ引張降伏とふさぎ板のせん断降伏は、降伏 ひずみに達した時点である。

試験体 No.5は, R=25.2/1000rad においてふさぎ板が せん断降伏した。その後, R=30/1000rad の加力サイク ルで加力装置の不具合により加力を中断した。加力を中 断するまで耐力低下はみられなかった。

No.5からコンクリート強度を低くした No.4は, R=19.1/1000rad においてふさぎ板がせん断降伏した。そ の後, R=30/1000rad で最大耐力を発揮し, 徐々に耐力が

表-4 実験結果一覧

実験値		No.4	No.5	No.6	No.7	No.10
ふさぎ板	Q _C (kN)	253.3	349.3	229.4	397.0	183.3
せん断降伏	R (×10 ⁻³ rad)	19.06	25.20	12.75	31.94	13.99
最大耐力	Q _C (kN)	285.2	358.2	301.3	407.7	246.5
破壊形式		接合部 せん断	-	接合部 せん断	-	接合部 せん断

a) No. 4

b) No. 5

d) No. 7

e) No. 10 写真-1 柱梁接合部の損傷状況 (R=30/1000rad 時)

図-4 層せん断力 Qc-層間変形角 R 関係

低下した。

No.5と比べふさぎ板を薄くした No.6 は、5 体のなかで最 も早い *R*=12.8/1000rad でふさぎが降伏した。No.4 と同じく *R*=30/1000rad で最大耐力を発揮し、徐々に耐力が低下した。

ふさぎ板が最も厚い No.7 では, R=31.9/1000rad でふさぎ 板がせん断降伏し,5体のなかでは最もせん断降伏するのが 遅かった。R=40/1000radの加力サイクルで,加力装置に不 具合が生じ、途中で加力を中断した。No.5と同様に,加力 を中断するまで耐力低下は見られなかった。

ふさぎ板の板厚が No.6 と同じで試験体形状がト字形で ある No.10 は, *R*=14.0/1000rad においてふさぎ板が降伏し, R=30/1000rad で最大耐力に達した。その後,耐力は徐々に 低下した。

3.2 ふさぎ板のせん断応力度

図-5にふさぎ板のせん断応力度 τ の分布を示す。同 図中の点線は材料試験結果より求めたせん断降伏強度 τ_{y} である。

ふさぎ板の板厚が 4.5mm の No.5 は, *R*=30/1000rad に おいて計測箇所の 6 割程度がせん断降伏していた。No.5 に対しふさぎ板が 2.3mm と薄い No.6 は, *R*=30/1000rad でふさぎ板の全面がせん断降伏した。ふさぎ板の板厚が 9mm と最も厚い No.7 は, *R*=30/1000rad ではいずれの計 測箇所もせん断降伏せず, *R*=40/1000rad で柱せい中央 付近がせん断降伏した。ト字形試験体である No. 10 は, ふさぎ板の板厚が同じ No. 6 と同様の応力度分布を示し た。

ふさぎ板の板厚が厚いほど,せん断降伏強度に達する 時の層間変形角が大きくなる傾向が認められた。また, いずれの試験体も柱せいの中央部分で応力度が最も大き く, 放物線状の分布形状であった。

3.3 接合部終局せん断耐力の評価

図-6に実験値である最大耐力と計算値である接合部 終局せん断耐力をそれぞれ計算値であるウェブを考慮し た梁全塑性曲げ耐力で無次元化した関係を,図-7に接 合部終局せん断耐力に対する最大耐力の比と,ふさぎ 板の基準化幅厚比の関係を示す。接合部終局せん断耐力 は,文献1)に示された式(2)~(5)を用いて算出し た。図中には本実験の5体の結果のほか,本実験と同様 の接合部ディテールである既往実験^{2)~6)}のなかで接合 部がせん断破壊した試験体の結果をプロットした。なお, 梁全塑性曲げ耐力に対する接合部終局せん断耐力の比が 1.0以下となる場合をせん断破壊と判断した。

$${}_{p}Q_{u} = \alpha_{1} \cdot {}_{ps}Q_{u} + \alpha_{2} \cdot {}_{pc}Q_{u}$$
⁽²⁾

図-5 せん断応力度 τ の分布

図-6 最大耐力と終局せん断耐力の関係

$${}_{ps}Q_u = 2 \cdot {}_C D \cdot {}_f t \cdot \frac{\sqrt{{}_f \sigma_y^2 - {}_f \sigma_0^2}}{\sqrt{3}} \cdot$$
(3)

$${}_{pc}Q_{u} = \left(\frac{cD}{2}\tan\theta_{s} + 4\sqrt{\frac{fM_{s}}{cD\cdot\sigma_{B}}}\sin\theta_{s}\right)_{c}D\cdot\sigma_{B} \quad (4)$$

$$\theta_{s} = \tan \theta^{-1} \left[\sqrt{1 + \left(\frac{sB}{c} \frac{d}{D}\right)^{2}} - \frac{sB}{c} \frac{d}{D} \right]$$
(5)

ここで、 ${}_{p}Q_{u}$ は接合部終局せん断耐力 (N), α_{1} はふさぎ板 に関する低減係数 (α_{1} =0.85), ${}_{ps}Q_{u}$ はふさぎ板が負担する 終局せん断耐力 (N), α_{2} はコンクリートアーチの低減係数 ($\alpha_{2}={}_{d}B/{}_{c}B$), ${}_{pc}Q_{u}$ はコンクリートが負担する終局せん断耐力 (N), ${}_{c}D$ は柱せい (nm), ${}_{f}t$ はふさぎ板の板厚 (nm), ${}_{f}\sigma_{y}$ はふさぎ 板の降伏強度 (N/nm²), ${}_{f}\sigma_{0}$ はふさぎ板部分の軸応力度 (N/ nm²), θ_{s} はコンクリート部分のアーチ機構角度, ${}_{f}M_{s}$ はふさぎ 板の全塑性曲げモーメント (Nnm), ${}_{\sigma_{B}}$ はコンクリート圧縮強 度(N/nm²), ${}_{sB}d$ は梁フランジ重心間距離nm), ${}_{c}B$ は柱幅nm), ${}_{d}B$ はダイアフラムの幅 (nm) である。 最大耐力と接合部終局せん断耐力の比は,本実験の試験 体で1.08~1.43,既往実験では0.94~1.86の範囲に分布 しており,式(2)~(5)によって実験結果を概ね安全側に 評価できることがわかった。

ただし、ふさぎ板の基準化幅厚比が 50 程度の試験体 では、他の試験体と比べ最大耐力と接合部終局せん断耐 力の比が小さくなる傾向が認められた。

4. まとめ

非梁貫通形式柱梁接合部のせん断耐力を検証する目的 で実験を行った結果,以下の知見を得た。

(1) ふさぎ板のせん断応力度分布は,柱せいの中央部で 応力度が最も大きく,降伏前は放物線状の分布形状で あった。また,ふさぎ板の板厚が厚いほど,せん断降伏 強度に達するときの層間変形角が大きくなる傾向が認め られた。

(2) 接合部終局せん断耐力(計算値)は、既往実験を含め文献1)に示された式により評価可能であることがわかった。

(3)ふさぎ板の基準化幅厚比が50程度の試験体では、 他の試験体と比べ、最大耐力(実験値)と接合部終局せん断耐力(計算値)の比が小さくなる傾向が認められた。

謝辞

本実験にご協力いただいた大阪工業大学 宮内靖昌教 授,学生諸氏においてはここに謝意を表します。

参考文献

- 日本建築学会:柱RC梁S混合構造設計指針(案)の作成に向けて、日本建築学会大会(中国)パネル ディスカッション資料,2017.8
- 2)藤本利昭,八ツ繁公一,宮野洋一,松井千秋:柱 RC・梁Sで構成される柱梁接合部の開発,鋼構造論 文集,第1巻第2号,pp.91-101,1994.6
- 宮野洋一:柱RC梁Sで構成される柱梁接合部のせん断耐力,鋼構造論文集,第5巻第19号,pp.97-105,1998.9
- 4)崎浜博史,西原寛,宮野洋一,小林和義:柱RC・梁
 Sで構成される混合構造接合部のせん断耐力と変形
 性状,コンクリート工学年次論文報告集,Vol.20, No.3, pp.781-786, 1998
- 5) 崎浜博史,西原寛:柱RC梁Sで構成される架構の 実験的研究(その10 十字試験体による柱および柱 梁接合部の実験),日本建築学会大会学術講演梗概 集,pp.1243-1244,2000.9
- 6) 成瀬忠, 堀伸輔, 前原俊夫, 岩岡信一:ダイアフラ ム形式の柱 RC 梁 S 接合部の構造性能に関する研究 (その1 接合部終局強度), 日本建築学会大会学術 講演梗概集, pp.1361-1362, 2017.8

Shear strength of RC Column - Steel Beam Joint

Yuuki KOYA, Taku TABATA and Takayuki ITO

We developed a mix-structure composed of the RC column and steel beam (RCS structure) with the nonpenetrating beam type joints. We tested the beam – column joint of the RCS structure as a part of the development to verify the structural performance. As a result, the shear strength of the beam – column joint satisfied past evaluations. However, the test specimen of the width-thickness ratio scaled by a yield strength of 50 had a smaller ratio of experiment value to calculated value than other test specimens.